perjantai 4. syyskuuta 2020

Vähän kaikki on vektoria

Toissa kerralla löysimme kolme tapaa mitata vektorin pituus. Kaikille kolmelle löytyi käyttötarkoitus, mutta arkielämässä vain yhdestä on hyötyä. Viime kerralla taas huomasimme, että arkinen mitta on kolmikon ainoa, jonka kanssa voi puhua kulmista. Mutta miksi asialla on merkitystä? Minkä vuoksi olen esittänyt pituusmittoja tasavertaisina, ja minkä takia ollut niin innoissani kulmien määrittelystä?

Syy on siinä, että kaikki, jonka parissa työskentelen matemaatikkona, on vektoria.

Jos tulet mukaan vasta tässä kohtaa, suosittelen aloittamaan yllä mainituista osista. Mutta varoituksen sana: en kertonut totuutta ensimmäisessä osassa.

tiistai 1. syyskuuta 2020

Kahden vektorin kulma

Linnulle ja taksille kahden korttelin matka on hyvin erilainen.

Viime kerralla havaitsimme, että pituuden voi laskea monella tapaa. Pisteestä pisteeseen voi kulkea linnuntietä tai taksilla, ja New Yorkin ruutukaavassa tulokset ovat erittäin erilaiset. Kahdesta erilaisesta pituusmitasta seuraa myös kaksi erilaista ympyrää, ja niistä vain toinen on pyöreä.

Kuitenkin arkielämässä on vain yksi tapa laskea pituus. Remonttihommissa ei hirveästi auta selitellä Manhattan-normia, kun huoneen kulmasta kulmaan pitäisi mitata palkki: ainoa tapa on sivu toiseen plus sivu toiseen ja neliöjuuri.

Jos kaikki pituuden määritelmät olivat muka yhtä päteviä, niin mikä sitten tekee Pythagoraan kaavasta niin ylivoimaisen?

torstai 27. elokuuta 2020

Vektori ja sen pituus

Ympyrä, 45 astetta käännetty neliö ja neliö.

Kuvassa on kolme ympyrää. Kuinka niin?

Kun minä olin nuori, vektorit jakoivat mielipiteitä. Tarkoitan siis, että lukiossa osa piti niistä ja osa ei päässyt jyvälle niiden logiikasta. Fysiikkaa lukeneet muistavat piirrelleensä mallikuviin nuolia ja siten päätelleensä mihin suuntaan laatikko/curlingkivi/veturi/jäätä pitkin liukuvan limupullon nappaava alieni (eikö teidän lukiossa?) liikkuu.

Yliopistomatikassa vektoreita käytetään ehkä yllättävän paljon ja tavoilla, joita ei heti ajattelisi. Meillä painopiste ei ole laatikon liikkeissä vaan ihan muissa jutuissa, joissa ei välttämättä näy pisaraakaan geometriaa. Tässä ja parissa seuraavassa tekstissä

  • käymme läpi, mitä vektorit oikein ovat,
  • kohtaamme kummallisia juttuja, kuten väitetyt kolme ympyrää, ja
  • selvitämme, miksi matemaatikko haluaa nähdä vektoreita kaikessa, mikä ei liiku.

maanantai 17. elokuuta 2020

Lukiomatikan top 3+1

Jatketaanpa vielä uuden lukuvuoden juhlimista toisen top 3 -listan, nimittäin muistelun merkeissä. Tässä tulevat kolme omaa suosikkiani lukiomatematiikasta sekä yksi bonusvinkki lukion aloittajille.

Kirjoitan tätä tietenkin yliopistossa matematiikkaa opiskelevan näkökulmasta, mutta kaikki kolme suosikkia löytyvät jossain muodossa lyhyestäkin matikasta. Yleensäkin tämä on vain oma mielipiteeni, ja ehkä aika on kullannut muistoja ja opetussuunnitelma muutenkin ajanut ohi.

Mitkä ovat omat suosikkisi?

keskiviikko 12. elokuuta 2020

Kolme vinkkiä lukion matikkaan/fysiikkaan/kemiaan

Minä lukemassa Pyramidi 5 -oppikirjaa vektoreista.

Bloggaaja palaa juurilleen.

Taas lähtee uusi lukuvuosi käyntiin! Sen kunniaksi on hyvä aika esittää kolme Taatusti Toimivaa Vinkkiä™, joilla saat täysienpisteidentarroja kokeisiisi*... tai mitä nyt sähköisiin kokeisiin liimataankaan. Joka tapauksessa, tässä tulee kolme ohjetta, jotka jokaisen lukionaloittajan ja varsinkin -lopettajan pitäisi mielestäni tietää.

* Arvosanatakuu: tämän artikkelin hinta (0 €) palautetaan kirjallista valitusta, pankkikortin molempia puolia ja sähköpostin salasanaa vastaan. Oikeat vastaukset eivät sisälly pakettiin.

Nämä vinkit ovat totta kai omia mielipiteitäni, joita olen kerryttänyt sekä lukiolaisena, satunnaisena tukiopettajana että matematiikan opiskelijana. Jaa ihmeessä omia neuvojasi esimerkiksi kommenteissa!

Kaikki kolme vinkkiä liittyvät päässälaskuun. Kyllä, päässälaskuun. GeoGebra-neuvoja joudut etsimään muualta. Voit pitää minua kalkkiksena, mutta ei siitä niin kauaa ole, kun olen itse kirjoittanut ylioppilaaksi. Meillä matikan osastolla sitä paitsi käytetään yhä liitutauluja (koomisuuteen asti) eikä tilanne ole lähivuosina muuttumassa. Siihen on syy.

tiistai 31. maaliskuuta 2020

Matemaatikkona työelämässä: Tutkimusavustaja, INAR

Työpöytä toimistossa, pöydällä läppäri, näyttö ja kirjoja.

Olen ollut nyt pari kuukautta töissä, tarkemmin sanottuna siviilipalveluksessa, Helsingin yliopiston Ilmakehätieteiden tutkimuskeskus INARissa. (Keskus ei kuitenkaan sijaitse Inarissa.) Vaikka henkilöstöhallinnolle olenkin siviilipalvelusmies, varsinainen työnkuvani on tutkimusavustaja.

Pari vuotta takaperin kirjoitin siitä, millaista on olla ohjelmistokehittäjänä sädehoidon parissa. Nyt vuorossa olisi yksi kuvaus työstä yliopistolla. Pidin viikon ajan päiväkirjaa tekemisistäni, ja tulokset ovat alla. En helmikuussa tätä ideoidessani arvannut, että työskentelisin koko viikon kotona – mutta samapa se, minkä pöydän ääressä nakuttaa läppäriä. Ehdinkin jo hetken nauttia työn ja vapaa-ajan erosta, jota opiskellessa on vaikea saavuttaa...

lauantai 7. syyskuuta 2019

Teekkarin ja teoreetikon ylin ystävä

Hämmentyneen näköinen siili.

Matemaatikkona olemiseen kuuluu myös kulttuurista tuntemusta kuten alalla olijoiden yhteistä sanastoa. Yksi tärkeimmistä tällaisista sanoista on käsienheiluttelu. Se viittaa siihen, mitä tilastotieteilijät, fyysikot ja teekkarit parhaiten tekevät eli tarkkojen perustelujen sivuuttamiseen.

Vaikka sanaa toki voi käyttää myös loukkauksena, mielestäni käsienheiluttelussa ei ole mitään pahaa. Tosimaailmassa nimenomaan täytyy ohittaa yksityiskohtia ja tehdä valistuneita arvauksia, jos aikoo saada jotain aikaiseksi. Ja joskus käsienheiluttelu johtaa jonkin suuremman äärelle. Tässä tapauksessa se vie syvälle funktioiden ymmärtämiseen tavalla, josta niin diplomi-insinööri kuin akateemikkokin tykkää.