tiistai 22. toukokuuta 2018

Vaarallinen veikkaus

Mikä luku tulee jonossa $1, 2, 4, 8, 16, \ldots$ seuraavaksi?

  1. $31$,
  2. $32$,
  3. $212$,
  4. ei mikään edellisistä.

tiistai 8. toukokuuta 2018

Mitä on todennäköisyys?

Todennäköisyyksien yhteenlaskukaava.

Yksi ekan opiskeluvuoden absurdeimmista kokemuksista tapahtui tammikuussa. Oli aivan tavallinen luento, kurssin Todennäköisyyslaskenta I ensimmäinen. Luvassa oli kurssi, jonka ohjelmasta ainakin puolet olisi lukiosta tutun jutun kertaamista.

Niinpä luennoitsija riipusti taululle tuttuja todennäköisyyden ominaisuuksia: todennäköisyys on aina nollan ja ykkösen välillä, tapahtuman ja sen vastatapahtuman todennäköisyyksien summa on $1$, ja niin edelleen. Selvää tavaraa, vaikka useampi lukio-opettaja kannustaakin välttämään yo-kokeen todennäköisyystehtävää.

Sitten luennoitsija totesi, että matemaatikoina yliopistossa meitä toki kiinnostaa, mistä nämä ominaisuudet tulevat. Siispä hän alkoi kirjoittaa todennäköisyydelle oikeaa määritelmää (tässä tiivistettynä):

Olkoon kokoelma perusjoukon $\Omega$ osajoukkoja $\mathcal F$ sigma-algebra. Nyt kuvaus $\mathrm P : \mathcal F \to \mathbb R$ on todennäköisyys, jos
  1. $\mathrm P(A) \geq 0$ kaikilla $A \in \mathcal F$,
  2. $\mathrm P(\Omega) = 1$,
  3. jos $A_i \in \mathcal F$ kaikilla $i \in \mathbb N_+$ ja $A_i \cap A_j \neq \emptyset$ kun $i \neq j$, niin \[ \mathrm P \left( \cap_{i=1}^\infty A_i \right) = \sum_{i=1}^\infty P(A_i). \]
Kolmikko $(\Omega, \mathcal F, P)$ on todennäköisyysavaruus.

Mitä ihmettä juuri tapahtui? Äsken puhuttiin kivoista laskukaavoista, nyt jostain joukko-opin infernaalisesta serkusta!